Задача №17029

№17029

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Упростить выражение \(\left ( \frac{a}{b}\sqrt[3]{b-\frac{4a^{6}}{b^{3}}}-a^{2}\sqrt[3]{\frac{b}{a^{6}}-\frac{4}{b^{3}}}+\frac{2}{ab}\sqrt[3]{a^{3}b^{4}-4a^{9}} \right ):\frac{\sqrt[3]{b^{2}-2a^{3}}}{b^{2}}\)

Ответ

\(\left ( a+b \right )\sqrt[3]{b^{2}+2a^{3}}\)

Решение № 17027:

\(\left ( \frac{a}{b}\sqrt[3]{b-\frac{4a^{6}}{b^{3}}}-a^{2}\sqrt[3]{\frac{b}{a^{6}}-\frac{4}{b^{3}}}+\frac{2}{ab}\sqrt[3]{a^{3}b^{4}-4a^{9}} \right ):\frac{\sqrt[3]{b^{2}-2a^{3}}}{b^{2}}=\left ( \frac{a}{b}\sqrt[3]{\frac{b^{4}-4a^{6}}{^{3}}}-a^{2}\sqrt[3]{\frac{b^{4}-4a^{6}}{a^{6}b^{3}}}+\frac{2}{ab}\sqrt[3]{a^{3}\left ( b^{4}-4a^{6} \right )} \right )\cdot \frac{b^{2}}{\sqrt[3]{b^{2}-2a^{3}}}=\left ( \frac{a\sqrt[3]{b^{4}-4a^{6}}}{b^{2}} -\frac{a^{2}\sqrt[3]b^{4}-4a^{6}}{{a^{2}b}}+\frac{2a\sqrt[3]{b^{4}-4a^{6}}}{ab}\right )\cdot \frac{b^{2}}{\sqrt[3]{b^{2}-2a^{3}}}=\frac{\sqrt[3]{\left ( b^{2}-2a^{3} \right )\left ( b^{2}+2a^{3} \right )\left ( a+b \right )}}{b^{2}}\cdot \frac{b^{2}}{\sqrt[3]{b^{2}-2a^{3}}}=\left ( a+b \right )\sqrt[3]{b^{2}+2a^{3}}\)

Поделиться в социальных сетях

Комментарии (0)