Задача №17027

№17027

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение \(\frac{\sqrt{x^{3}}+\sqrt{xy^{2}}-\sqrt{x^{2}y}-\sqrt{y^{3}}}{\sqrt[4]{x^{5}}+\sqrt[4]{x^{4}y}-\sqrt[4]{xy^{4}}-\sqrt[4]{x^{5}}}\)

Ответ

\(-\left ( \sqrt[4]{x}+\sqrt[4]{y} \right )\)

Решение № 17025:

\(\frac{\sqrt{x^{3}}+\sqrt{xy^{2}}-\sqrt{x^{2}y}-\sqrt{y^{3}}}{\sqrt[4]{x^{5}}+\sqrt[4]{x^{4}y}-\sqrt[4]{xy^{4}}-\sqrt[4]{x^{5}}}=\frac{\left ( \sqrt{x^{3}}+\sqrt{xy^{2}} \right )-\left ( \sqrt{x^{2}y}+\sqrt{y^{3}} \right )}{\left ( \sqrt[4]{x^{5}}+\sqrt[4]{x^{4}y} \right )-\left ( \sqrt[4]{xy^{4}}+\sqrt[4]{x^{5}} \right )}=\frac{\sqrt{x}\left ( x+y \right )-\sqrt{y}\left ( x+y \right )}{\sqrt[4]{y}\left ( x+y \right )-\sqrt[4]{x}\left ( x+y \right )}=\frac{\left ( x+y \right )\left ( \sqrt{x}-\sqrt{y} \right )}{\left ( x+y \right )\left ( \sqrt[4]{y}-\sqrt[4]{x} \right )}=-\left ( \sqrt[4]{x}+\sqrt[4]{y} \right )\)

Поделиться в социальных сетях

Комментарии (0)