№17002
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение и вычислить \(\frac{\sqrt{2a+2\sqrt{a^{2}-9}}}{\sqrt{2a-2\sqrt{a^{2}-9}}}\)
Ответ
\(\frac{a+\sqrt{a^{2}-9}}{3}\)
Решение № 17000:
\(\frac{\sqrt{2a+2\sqrt{a^{2}-9}}}{\sqrt{2a-2\sqrt{a^{2}-9}}}=\frac{\sqrt{a+3+2\sqrt{\left ( a+3 \right )\left ( a-3 \right )}+a-3}}{\sqrt{a+3-2\sqrt{\left ( a+3 \right )\left ( a-3 \right )}+a-3}}=\frac{\sqrt{a+3}+\sqrt{a-3}}{\sqrt{a+3}-\sqrt{a-3}}=\frac{\left ( \sqrt{a+3}+\sqrt{a-3} \right )^{2}}{\left ( \sqrt{a+3} \right )^{2}-\left ( \sqrt{a-3} \right )^{2}}=\frac{2a+2\sqrt{a^{2}-9}}{6}=\frac{a+\sqrt{a^{2}-9}}{3}\)