№17000
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Упростить выражение \(\left ( \sqrt{ab}-ab\left ( a+\sqrt{ab} \right )^{-1} \right ):\left ( 2\left (\left ( ab \right )^{\frac{1}{2}}-b \right )\left ( a-b \right )^{-1}\right )\)
Ответ
\(\frac{a}{2}\)
Решение № 16998:
\(\left ( \sqrt{ab}-ab\left ( a+\sqrt{ab} \right )^{-1} \right ):\left ( 2\left (\left ( ab \right )^{\frac{1}{2}}-b \right )\left ( a-b \right )^{-1}\right )=\left ( \sqrt{ab}-\frac{ab}{a+\sqrt{ab}} \right ):\frac{2\left ( \sqrt{ab}-b \right )}{a-b}=\left ( \sqrt{ab}-\frac{ab}{\sqrt{a}\left ( \sqrt{a}+\sqrt{b} \right )} \right ):\frac{2\sqrt{b}\left ( \sqrt{a}-\sqrt{b} \right )}{\left ( \sqrt{a}-\sqrt{b} \right )\left ( \sqrt{a}+\sqrt{b} \right )}=\sqrt{ab}\left ( 1-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}} \right )\cdot \frac{\sqrt{a}+\sqrt{b}}{2\sqrt{b}}=\frac{a}{2}\)