№16997
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\sqrt{\frac{x}{x-a^{2}}}:\left ( \frac{\sqrt{x}-\sqrt{x-a^{2}}}{\sqrt{x}+\sqrt{x-a^{2}}}- \frac{\sqrt{x}+\sqrt{x-a^{2}}}{\sqrt{x}-\sqrt{x-a^{2}}}\right )\)
Ответ
\(\frac{a^{2}}{4\left ( a^{2}-x \right )}\)
Решение № 16995:
\(\sqrt{\frac{x}{x-a^{2}}}:\left ( \frac{\sqrt{x}-\sqrt{x-a^{2}}}{\sqrt{x}+\sqrt{x-a^{2}}}- \frac{\sqrt{x}+\sqrt{x-a^{2}}}{\sqrt{x}-\sqrt{x-a^{2}}}\right )=\sqrt{\frac{x}{x-a^{2}}}:\left ( \frac{\left ( \sqrt{x}-\sqrt{x-a^{2}} \right )^{2}-\left ( \sqrt{x}+\sqrt{x-a^{2}} \right )^{2}}{\left ( \sqrt{x}+\sqrt{x-a^{2}} \right )\left ( \sqrt{x}-\sqrt{x-a^{2}} \right )} \right )=\sqrt{\frac{x}{x-a^{2}}}:\frac{-4\sqrt{x\left ( x-a^{a} \right )}}{x-x+a^{2}}=-\frac{a^{2}}{4\left ( x-a^{2} \right )}=\frac{a^{2}}{4\left ( a^{2}-x \right )}\)