№16996
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение и вычислить \(\frac{4-\sqrt[3]{a^{2}}}{\left ( 2+\sqrt[3]{ab} \right )^{2}-\left ( \sqrt[3]{a}+2\sqrt[3]{b} \right )^{2}}\)
Ответ
\(\frac{5}{4}\)
Решение № 16994:
\(\frac{4-\sqrt[3]{a^{2}}}{\left ( 2+\sqrt[3]{ab} \right )^{2}-\left ( \sqrt[3]{a}+2\sqrt[3]{b} \right )^{2}}=\frac{4-\sqrt[3]{a^{2}}}{\left ( 4-\sqrt[3]{a^{2}} \right )-\sqrt[3]{b^{2}\left ( 4-\sqrt[3]{a^{2}} \right )}}=\frac{4-\sqrt[3]{a^{2}}}{\left ( 4-\sqrt[3]{a^{2}} \right )\left ( 1-\sqrt[3]{a^{2}} \right )}=\frac{1}{1-\sqrt[3]{a^{2}}}=\frac{1}{1-\sqrt[3]{0.008}}=\frac{1}{1-0.2}=\frac{1}{0.8}=\frac{5}{4}\)