Задача №16996

№16996

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение и вычислить \(\frac{4-\sqrt[3]{a^{2}}}{\left ( 2+\sqrt[3]{ab} \right )^{2}-\left ( \sqrt[3]{a}+2\sqrt[3]{b} \right )^{2}}\)

Ответ

\(\frac{5}{4}\)

Решение № 16994:

\(\frac{4-\sqrt[3]{a^{2}}}{\left ( 2+\sqrt[3]{ab} \right )^{2}-\left ( \sqrt[3]{a}+2\sqrt[3]{b} \right )^{2}}=\frac{4-\sqrt[3]{a^{2}}}{\left ( 4-\sqrt[3]{a^{2}} \right )-\sqrt[3]{b^{2}\left ( 4-\sqrt[3]{a^{2}} \right )}}=\frac{4-\sqrt[3]{a^{2}}}{\left ( 4-\sqrt[3]{a^{2}} \right )\left ( 1-\sqrt[3]{a^{2}} \right )}=\frac{1}{1-\sqrt[3]{a^{2}}}=\frac{1}{1-\sqrt[3]{0.008}}=\frac{1}{1-0.2}=\frac{1}{0.8}=\frac{5}{4}\)

Поделиться в социальных сетях

Комментарии (0)