№16995
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение и вычислить \(\frac{\sqrt{\left ( 1+\frac{b}{a} \right )^{2}-\frac{4b+1}{a}}\left ( \sqrt{a}+\sqrt{b+\sqrt{a}} \right )^{-\frac{1}{2}}}{\sqrt{a-b+\sqrt{a}}\sqrt{\sqrt{a}-\sqrt{b+\sqrt{a}}}}\)
Ответ
\(\frac{4}{9}\)
Решение № 16993:
\(\frac{\sqrt{\left ( 1+\frac{b}{a} \right )^{2}-\frac{4b+1}{a}}\left ( \sqrt{a}+\sqrt{b+\sqrt{a}} \right )^{-\frac{1}{2}}}{\sqrt{a-b+\sqrt{a}}\sqrt{\sqrt{a}-\sqrt{b+\sqrt{a}}}}=\frac{\frac{\sqrt{\left ( a-b \right )^{2}-a}}{a}}{\sqrt{\left ( a-b+\sqrt{a} \right )\left ( a-b-\sqrt{a} \right )}}=\frac{\sqrt{\left ( a-b \right )^{2}-a}}{a\sqrt{\left ( a-b \right )^{2}-a}}=\frac{1}{a}=\frac{1}{2.25}=\frac{1}{\frac{9}{4}}=\frac{4}{9}\)