№16994
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Упростить выражение и вычислить \(\frac{\sqrt{x-4\sqrt{x-4}}+2}{\sqrt{x-4\sqrt{x-4}}-2}\)
Ответ
\(\frac{4}{\sqrt{x-4}}-1;1\)
Решение № 16992:
\(\frac{\sqrt{x-4\sqrt{x-4}}+2}{\sqrt{x-4\sqrt{x-4}}-2}=\frac{\sqrt{x-4-4\sqrt{x-4}+4}+2}{\sqrt{x-4+4\sqrt{x-4}+4}-2}=\frac{\left | \sqrt{x-4}-2 \right |+2}{\sqrt{x-4}+2-2}=\frac{\left | \sqrt{x-4}-2 \right |+2}{\sqrt{x-4}}=\frac{4}{\sqrt{x-4}}-1;1\)