Задача №16993

№16993

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение и вычислить \(\frac{1}{\sqrt{x^{2}+4x+4}}+\left | x-2 \right |\)

Ответ

\(\frac{3-x^{2}}{x+2};\frac{5-x^{2}}{x+2};\frac{x^{2}-3}{x+2}\)

Решение № 16991:

\(\frac{1}{\sqrt{x^{2}+4x+4}}+\left | x-2 \right |=\frac{1}{\sqrt{\left ( x+2 \right )^{2}}}+\left | x-2 \right |=\frac{1}{\left | x+2 \right |}+\left | x-2 \right |=\frac{1+\left | x^{2}-4 \right |}{\left | x+2 \right |}=\frac{1+x^{2}-4}{-\left ( x+2 \right )};\frac{1-\left (x^{2}-4 \right )}{ x+2 };\frac{1+x^{2}-4}{ x+2}=\frac{3-x^{2}}{x+2};\frac{5-x^{2}}{x+2};\frac{x^{2}-3}{x+2}\)

Поделиться в социальных сетях

Комментарии (0)