№16991
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение и вычислить \(\frac{x\left | x-3 \right |+x^{2}-9}{2x^{3}-3x^{2}-9x}\)
Ответ
\(\frac{3}{x\left ( 2x+3 \right )};\frac{1}{x}\)
Решение № 16989:
\(\frac{x\left | x-3 \right |+x^{2}-9}{2x^{3}-3x^{2}-9x}=\frac{x\left | x-3 \right |+x^{2}-9}{x\left ( 2x^{2}-3x-9 \right )}=\frac{-x\left ( x-3 \right )+x^{2}-9}{x\left ( 2x^{2}-3x-9 \right )};\frac{x\left ( x-3 \right )+x^{2}-9}{x\left ( 2x^{2}-3x-9 \right )}= \frac{3\left ( x-3 \right )}{x\left ( 2x+3 \right )\left ( x-3 \right )};\frac{2x^{2}-3x-9}{x\left ( 2x^{2}-3x-9 \right )}=\frac{3}{x\left ( 2x+3 \right )};\frac{1}{x}\)