Задача №16989

№16989

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Сделать указанную подстановку и упростить результат \(\left ( x+1 \right )\left ( x+2 \right )\left ( x+3 \right )\left ( x+4 \right ); x=\frac{\sqrt{7}-5}{2};\)

Ответ

\(-\frac{3}{4}\)

Решение № 16987:

\(\left ( x+1 \right )\left ( x+2 \right )\left ( x+3 \right )\left ( x+4 \right ); x=\frac{\sqrt{7}-5}{2};=\left (\frac{\sqrt{7}-5}{2}+1 \right )\left ( \frac{\sqrt{7}-5}{2}+2 \right )\left ( \frac{\sqrt{7}-5}{2}+3 \right )\left ( \frac{\sqrt{7}-5}{2}+4 \right )=\left ( \left ( \frac{\sqrt{7}-5}{2} \right )^{2}+5\frac{\sqrt{7}-5}{2}+4 \right )\left ( \left ( \frac{\sqrt{7}-5}{2} \right )^{2}+5\frac{\sqrt{7}-5}{2}+6 \right )=\left ( \frac{-9}{2} \right )^{2}+10\left ( \frac{-9}{2}+24 \right )=-\frac{3}{4}\)

Поделиться в социальных сетях

Комментарии (0)