№16989
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Сделать указанную подстановку и упростить результат \(\left ( x+1 \right )\left ( x+2 \right )\left ( x+3 \right )\left ( x+4 \right ); x=\frac{\sqrt{7}-5}{2};\)
Ответ
\(-\frac{3}{4}\)
Решение № 16987:
\(\left ( x+1 \right )\left ( x+2 \right )\left ( x+3 \right )\left ( x+4 \right ); x=\frac{\sqrt{7}-5}{2};=\left (\frac{\sqrt{7}-5}{2}+1 \right )\left ( \frac{\sqrt{7}-5}{2}+2 \right )\left ( \frac{\sqrt{7}-5}{2}+3 \right )\left ( \frac{\sqrt{7}-5}{2}+4 \right )=\left ( \left ( \frac{\sqrt{7}-5}{2} \right )^{2}+5\frac{\sqrt{7}-5}{2}+4 \right )\left ( \left ( \frac{\sqrt{7}-5}{2} \right )^{2}+5\frac{\sqrt{7}-5}{2}+6 \right )=\left ( \frac{-9}{2} \right )^{2}+10\left ( \frac{-9}{2}+24 \right )=-\frac{3}{4}\)