№16988
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Сделать указанную подстановку и упростить результат \(\frac{\left ( z-1 \right )\left ( z+2 \right )\left ( z-3 \right )\left ( z+4 \right )}{23}; x=\frac{\sqrt{3}-1}{2};\)
Ответ
\(\frac{3}{4}\)
Решение № 16986:
\(\frac{\left ( z-1 \right )\left ( z+2 \right )\left ( z-3 \right )\left ( z+4 \right )}{23}; x=\frac{\sqrt{3}-1}{2};=\frac{\left (\frac{\sqrt{3}-1}{2}-1 \right )\left ( \frac{\sqrt{3}-1}{2}+2 \right )\left ( \frac{\sqrt{3}-1}{2}-3 \right )\left ( \frac{\sqrt{3}-1}{2}+4 \right )}{23}=\frac{\left ( \left ( \frac{\sqrt{3}-1}{2} \right )^{2}+\frac{\sqrt{3}-1}{2}-2 \right )\left ( \left ( \frac{\sqrt{3}-1}{2} \right )^{2}+\frac{\sqrt{3}-1}{2}-12 \right )}{23}=\frac{\left ( \frac{1}{2} \right )^{2}-14\frac{1}{2}+24}{23}=\frac{\frac{1}{4}-7+24}{23}=\frac{3}{4}\)