Задача №16987

№16987

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Упростить выражение \(\frac{4a^{2}-b^{2}}{a^{6}-8b^{6}}\sqrt{a^{2}-2b\sqrt{a^{2}-b^{2}}}\cdot \frac{a^{4}+2a^{2}b^{2}+4b^{4}}{4a^{2}+4ab+b^{2}}\cdot \sqrt{a^{2}+2b\sqrt{a^{2}-b^{2}}}\)

Ответ

\(\frac{29}{35}\)

Решение № 16985:

\(\frac{4a^{2}-b^{2}}{a^{6}-8b^{6}}\sqrt{a^{2}-2b\sqrt{a^{2}-b^{2}}}\cdot \frac{a^{4}+2a^{2}b^{2}+4b^{4}}{4a^{2}+4ab+b^{2}}\cdot \sqrt{a^{2}+2b\sqrt{a^{2}-b^{2}}}=\frac{\left ( 2a-b \right )\left ( 2a+b \right )}{\left ( a^{2} \right )^{3}-\left ( 2b^{2} \right )^{3}}\cdot \frac{a^{4}+2a^{2}b^{2}+4b^{4}}{\left ( 2a+b \right )^{2}}\cdot \sqrt{\left (a^{2}-2b\sqrt{a^{2}-b^{2}} \right )\left (a^{2}+2b\sqrt{a^{2}-b^{2}}\right )}=\frac{\left ( 2a-b \right )\left ( a^{4}+2a^{2}b^{2}+4b^{4} \right )}{\left ( a^{2}-2b^{2} \right )\left ( a^{4}+2a^{2}b^{2}+4b^{4} \right )\left ( 2a+b \right )}\cdot \sqrt{a^{4}-4b^{2}\left ( a^{2}-b^{2} \right )}=\frac{\left ( 2a-b \right )\left ( a^{2}-2b^{2} \right )}{\left ( a^{2}-2b^{2} \right )\left ( 2a+b \right )}=\frac{2a-b}{2a+b}=\frac{2\cdot \frac{4}{3}-0.25}{2\cdot \frac{4}{3}+0.25}=\frac{7.25}{8.75}=\frac{29}{35}\)

Поделиться в социальных сетях

Комментарии (0)