№16986
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\frac{x\left ( x^{2}-a^{2} \right )^{-\frac{1}{2}}+1}{a\left ( x-a \right )^{-\frac{1}{2}}+\left ( x+a \right )^{\frac{1}{2}}}:\frac{a^{2}\sqrt{x+a}}{x-\left ( x^{2}-a^{2} \right )^{\frac{1}{2}}}+\frac{1}{x^{2}-ax}\)
Ответ
\(\frac{2}{x^{2}-a^{2}}\)
Решение № 16984:
\(\frac{x\left ( x^{2}-a^{2} \right )^{-\frac{1}{2}}+1}{a\left ( x-a \right )^{-\frac{1}{2}}+\left ( x+a \right )^{\frac{1}{2}}}:\frac{a^{2}\sqrt{x+a}}{x-\left ( x^{2}-a^{2} \right )^{\frac{1}{2}}}+\frac{1}{x^{2}-ax}=\frac{\frac{x}{\sqrt{x^{2}-a^{2}}+1}}{\frac{a}{\sqrt{x-a}}+\sqrt{x-a}}:\frac{a^{2}\sqrt{x+a}}{x-\sqrt{x^{2}-a^{2}}}+\frac{1}{x\left ( x-a \right )}=\frac{\left ( x+\sqrt{x^{2}-a^{2}}\sqrt{x-a} \right )}{\sqrt{\left ( x+a \right )\left ( x-a \right )}\left ( a+x-a \right )}\cdot \frac{x-\sqrt{x^{2}-a^{2}}}{a^{2}\sqrt{x+a}}+\frac{1}{x\left ( x-a \right )}=\frac{x^{2}-x^{2}+a^{2}}{a^{2}x\left ( x+a \right )}+\frac{1}{\left ( x-a \right )}=\frac{1}{\left ( x+a \right )}+\frac{1}{\left ( x-a \right )}=\frac{2}{x^{2}-a^{2}}\)