№16985
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\left ( \left ( 1-p^{2} \right )^{-\frac{1}{2}} -\left ( 1+p^{2} \right )^{-\frac{1}{2}} \right )^{2}+2\left ( 1-p^{4} \right )^{-\frac{1}{2}}\)
Ответ
\(\frac{2}{1-p^{4}}\)
Решение № 16983:
\(\left ( \left ( 1-p^{2} \right )^{-\frac{1}{2}} -\left ( 1+p^{2} \right )^{-\frac{1}{2}} \right )^{2}+2\left ( 1-p^{4} \right )^{-\frac{1}{2}}=\left ( \frac{1}{\sqrt{1-p^{2}}}-\frac{1}{\sqrt{1+p^{2}}} \right )^{2}+\frac{2}{\sqrt{1-p^{4}}}=\left ( \frac{\sqrt{1+p^{2}}-\sqrt{1-p^{2}}}{\sqrt{1-p^{4}}} \right )^{2}+\frac{2}{\sqrt{1-p^{4}}}=\frac{1+p^{2}-2\sqrt{1-p^{4}}+1-p^{2}}{1-p^{4}}+\frac{2}{\sqrt{1-p^{4}}}=\frac{2-2\sqrt{1-p^{4}}}{1-p^{4}}+\frac{2}{\sqrt{1-p^{4}}}=\frac{2-2\sqrt{1-p^{4}}+2\sqrt{1-p^{4}}}{1-p^{4}}=\frac{2}{1-p^{4}}\)