№16984
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Освободиться от иррациональности в дроби \(\frac{6}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
Ответ
\(\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{2}\)
Решение № 16982:
\(\frac{6}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\frac{6\left ( \sqrt{2}+\sqrt{3}-\sqrt{5} \right )}{\left ( \sqrt{2}+\sqrt{3}+\sqrt{5} \right )\left ( \sqrt{2}+\sqrt{3}-\sqrt{5} \right )}=\frac{6\left ( \sqrt{2}+\sqrt{3}-\sqrt{5} \right )}{2+3-5+2\sqrt{2*3}}=\frac{\sqrt{4*3}+\sqrt{9*2}-\sqrt{30}}{2}=\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{2}\)