Задача №16983

№16983

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Вычислить значение выражения \frac{z^{3}}{3}-z, z=\sqrt[3]{\sqrt{3}+\sqrt{2}}+\sqrt[3]{\sqrt{3}-\sqrt{2}}; x^{3}+3x, x=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}

Ответ

\(\frac{2\sqrt{3}}{3}; 4\)

Решение № 16981:

\(\frac{z^{3}}{3}-z=\frac{\sqrt[3]{\sqrt{3}+\sqrt{2}}+\sqrt[3]{\sqrt{3}-\sqrt{2}}}{3}-\left ( \sqrt[3]{\sqrt{3}+\sqrt{2}}+\sqrt[3]{\sqrt{3}-\sqrt{2}} \right )=\frac{2\sqrt{3}+3\sqrt[3]{\left ( 3-2 \right )\left ( \sqrt{3}+\sqrt{2} \right )}-3\sqrt[3]{\left ( 3-2 \right )\left ( \sqrt{3}-\sqrt{2} \right )}-3\sqrt[3]{\sqrt{3}+\sqrt{2}}-3\sqrt[3]{\sqrt{3}-\sqrt{2}}}{3}=\frac{2\sqrt{3}+3\sqrt[3]{\sqrt{3}+\sqrt{2}}+3\sqrt[3]{\sqrt{3}-\sqrt{2}}-3\sqrt[3]{\sqrt{3}+\sqrt{2}}-3\sqrt[3]{\sqrt{3}-\sqrt{2}}}{3}=\frac{2\sqrt{3}}{3}; x^{3}+3x=\left ( \sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2} \right )^{3}+3\left ( \sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2} \right )=\sqrt{5}+2-3\sqrt[3]{\left ( \sqrt{5}+2 \right )^{2}\left ( \sqrt{5}-2 \right )}+3\sqrt[3]{\left ( \sqrt{5}+2 \right )\left ( \sqrt{5}-2 \right )^{2}}-\sqrt{5}+2+3\sqrt[3]{\sqrt{5}+2}-3\sqrt[3]{\sqrt{5}-2}=4-3\sqrt[3]{\sqrt{5}+2}+3\sqrt[3]{\sqrt{5}-2}+3\sqrt[3]{\sqrt{5}+2}-3\sqrt[3]{\sqrt{5}-2}=4\)

Поделиться в социальных сетях

Комментарии (0)