№16982
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\sqrt{\frac{2a}{\left ( 1+a \right )\sqrt[3]{1+a}}}\cdot \sqrt[3]{\frac{4+\frac{8}{a}+\frac{4}{a^{2}}}{\sqrt{2}}}\)
Ответ
\(\frac{2\sqrt[6]{a^{5}}}{a}\)
Решение № 16980:
\(\sqrt{\frac{2a}{\left ( 1+a \right )\sqrt[3]{1+a}}}\cdot \sqrt[3]{\frac{4+\frac{8}{a}+\frac{4}{a^{2}}}{\sqrt{2}}}=\sqrt[6]{\left ( \frac{2a}{\left ( 1+a \right )\sqrt[3]{1+a}} \right )^{3}}\cdot \sqrt[6]{\left ( \frac{\frac{4+\frac{8}{a}+\frac{4}{a^{2}}}{\sqrt{2}}} \right )}=\sqrt[6]{\frac{8a^{3}}{\left ( 1+a \right )^{4}}\cdot \sqrt[6]{\frac{8\left ( 1+a \right )^{4}}{a^{4}}}}=\sqrt[6]{\frac{64}{a}}=\frac{2\sqrt[6]{a^{5}}}{a}\)