№16981
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\frac{\left ( \sqrt[3]{\left (r^{2}+4}\right )\cdot \sqrt{1+\frac{4}{r^{2}}}-\sqrt[3]{\left ( r^{2}+4 \right )\sqrt{1-\frac{4}{r^{2}}}} \right )^{2}}{r^{2}-\sqrt{r^{4}-16}}\)
Ответ
\(\frac{2\sqrt[3]{r}}{r}\)
Решение № 16979:
\(\frac{\left ( \sqrt[3]{\left (r^{2}+4}\right )\cdot \sqrt{1+\frac{4}{r^{2}}}-\sqrt[3]{\left ( r^{2}+4 \right )\sqrt{1-\frac{4}{r^{2}}}} \right )^{2}}{r^{2}-\sqrt{r^{4}-16}}=\frac{2\left ( r^{2}-\sqrt[3]{\left ( r^{4}-16 \right )^{\frac{3}{2}}} \right )}{\sqrt[3]{r^{2}}\left ( r^{2}-\sqrt{r^{4}-16} \right )}=\frac{2}{\sqrt[3]{r^{2}}}=\frac{2\sqrt[3]{r}}{r}\)