Задача №16979

№16979

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение \((\left ( \left ( \sqrt[4]{p}-\sqrt[4]{q} \right )^{-2} +\left ( \sqrt[4]{p} +\sqrt[4]{q}\right )^{-2}\right ):\frac{\sqrt{p}+\sqrt{q}}{p-q}\)

Ответ

\(\frac{2\left ( \sqrt{p}+\sqrt{q} \right )^{2}}{p-q}\)

Решение № 16977:

\(\left ( \left ( \sqrt[4]{p}-\sqrt[4]{q} \right )^{-2} +\left ( \sqrt[4]{p} +\sqrt[4]{q}\right )^{-2}\right ):\frac{\sqrt{p}+\sqrt{q}}{p-q}=\left ( \frac{1}{\left ( \sqrt[4]{p}-\sqrt[4]{q} \right )^{2}} +\frac{1}{\left ( \sqrt[4]{p}+\sqrt[4]{q} \right )^{2}}\right )\cdot \frac{p-q}{\sqrt{p}+\sqrt{q}}=\frac{\left ( \sqrt[4]{p}+\sqrt[4]{q} \right )^{2}+\left ( \sqrt[4]{p}-\sqrt[4]{q} \right )^{2}}{\sqrt{p}-\sqrt{q}}\cdot \frac{\left ( \sqrt{p}-\sqrt{q} \right )\left ( \sqrt{p}+\sqrt{q} \right )}{\sqrt{p}+\sqrt{q}}=\frac{\sqrt{p}+2\sqrt[4]{pq}+\sqrt{q}+\sqrt{p}-2\sqrt[4]{pq}+\sqrt{q}}{\sqrt{p}-\sqrt{q}}=\frac{2\left ( \sqrt{p}+\sqrt{q} \right )}{\sqrt{p}-\sqrt{q}}=\frac{2\left ( \sqrt{p}+\sqrt{q} \right )\left ( \sqrt{p}+\sqrt{q} \right )}{\left ( \sqrt{p}-\sqrt{q} \right )\left ( \sqrt{p}-\sqrt{q} \right )}=\frac{2\left ( \sqrt{p}+\sqrt{q} \right )^{2}}{p-q}\)

Поделиться в социальных сетях

Комментарии (0)