№16978
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение и вычислить \(\frac{b^{2}-3b-\left ( b-1 \right )\sqrt{b^{2}-4}+1}{b^{2}+3b-\left ( b-1 \right )\sqrt{b^{2}-4}+1}\sqrt{\frac{b+2}{b-2}}\)
Ответ
\(\frac{1-b}{1+b}\)
Решение № 16976:
\(\frac{b^{2}-3b-\left ( b-1 \right )\sqrt{b^{2}-4}+1}{b^{2}+3b-\left ( b-1 \right )\sqrt{b^{2}-4}+1}\sqrt{\frac{b+2}{b-2}}=\frac{\left ( b^{2}-3b+b \right )-\left ( b-1 \right )\sqrt{\left ( b-2 \right )\left ( b+2 \right )}}{\left ( b^{2}-3b+b \right )-\left ( b-1 \right )\sqrt{\left ( b-2 \right )\left ( b+2 \right )}{\sqrt{\frac{b+2}{b-2}}=-\frac{b-1}{b+1}=\frac{1-b}{1+b}\)