Задача №16977

№16977

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение и вычислить \(\frac{\left ( x+1 \right )^{-\frac{1}{2}}}{\left ( x-1 \right )^{-\frac{1}{2}}-\left ( x+1 \right )^{-\frac{1}{2}}}\)

Ответ

\(\frac{1-a}{2a};\frac{a-1}{2}\)

Решение № 16975:

\(\frac{\left ( x+1 \right )^{-\frac{1}{2}}}{\left ( x-1 \right )^{-\frac{1}{2}}-\left ( x+1 \right )^{-\frac{1}{2}}}=\frac{1}{\sqrt{x+1}}\cdot \frac{\sqrt{x-1}\sqrt{x+1}}{\sqrt{x+1}-\sqrt{x-1}}=\frac{\sqrt{x-1}\left ( \sqrt{x+1}+\sqrt{x-1} \right )}{\left ( \sqrt{x+1} \right )^{2}-\left ( \sqrt{x-1} \right )^{2}}=\frac{\sqrt{x-1}\left ( \sqrt{x+1}+\sqrt{x-1} \right )}{x+1-x+1}=\frac{\sqrt{x-1}\left ( \sqrt{x+1}+\sqrt{x-1} \right )}{2}=\frac{\sqrt{\frac{a^{2}+1}{2a}-1}\left ( \sqrt{\frac{a^{2}+1}{2a}+1} +\sqrt{\frac{a^{2}+1}{2a}-1}\right )}{2}=\frac{\left | a-1 \right |\left ( a+1 \right )+\left ( a-1 \right )^{2}}{4a}=\frac{1-a}{2a};\frac{a-1}{2}\)

Поделиться в социальных сетях

Комментарии (0)