№16975
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение и вычислить \(\left ( \sqrt[3]{\frac{x+1}{x-1}}+\sqrt[3]{\frac{x-1}{x+1}}-2 \right )^{\frac{1}{2}}\)
Ответ
\(\frac{1-a}{\sqrt{a}};\frac{a-1}{\sqrt{a}}\)
Решение № 16973:
\(\left ( \sqrt[3]{\frac{x+1}{x-1}}+\sqrt[3]{\frac{x-1}{x+1}}-2 \right )^{\frac{1}{2}}=\sqrt{\sqrt[3]{\frac{x+1}{x-1}}+\frac{1}{\sqrt[3]{\frac{x+1}{x-1}}}-2}=\left | \sqrt[3]{\frac{x+1}{x-1}}-1 \right |\sqrt[6]{\frac{x-1}{x+1}}=\left | \sqrt[3]{\frac{2a^{3}}{2}}-1 \right |\sqrt[6]{\frac{2}{2a^{3}}}=\left | a-1 \right |\frac{1}{\sqrt{a}}=\frac{1-a}{\sqrt{a}};\frac{a-1}{\sqrt{a}}\)