№16974
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\left ( \frac{1+\sqrt{x}}{\sqrt{1+x}}-\frac{\sqrt{1+x}}{1+\sqrt{x}} \right )^{2}-\left ( \frac{1-\sqrt{x}}{\sqrt{1+x}}-\frac{\sqrt{1+x}}{1-\sqrt{x}} \right )^{2}\)
Ответ
\(\frac{16x\sqrt{x}}{\left ( 1-x^{2} \right )\left ( x-1 \right )}\)
Решение № 16972:
\(\left ( \frac{1+\sqrt{x}}{\sqrt{1+x}}-\frac{\sqrt{1+x}}{1+\sqrt{x}} \right )^{2}-\left ( \frac{1-\sqrt{x}}{\sqrt{1+x}}-\frac{\sqrt{1+x}}{1-\sqrt{x}} \right )^{2}=\left ( \frac{1+2\sqrt{x}+x-1-x}{\sqrt{1+x}\left ( 1+\sqrt{x} \right )} \right )^{2}-\left ( \frac{1-2\sqrt{x}+x-1-x}{\sqrt{1+x}\left ( 1-\sqrt{x} \right )} \right )^{2}=\left ( \frac{2\sqrt{x}}{\sqrt{1+x}\left ( 1+\sqrt{x} \right )} \right )^{2}-\left ( \frac{-2\sqrt{x}}{\sqrt{1+x}\left ( 1-\sqrt{x} \right )} \right )^{2}=\frac{4x}{\left (\sqrt{1+x}\left ( 1+\sqrt{x} \right )\right )^{2}}-\frac{4x}{\left (\sqrt{1+x}\left ( 1-\sqrt{x} \right )\right )^{2}}=\frac{-16x}{\left ( 1+x \right )\left ( 1-x \right )\left ( 1-x \right )}=\frac{16x\sqrt{x}}{\left ( 1-x^{2} \right )\left ( x-1 \right )}\)