Задача №16973

№16973

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение и вычислить \(\left ( \frac{\left ( x+\sqrt[3]{2ax^{2}} \right )\left ( 2a+\sqrt[3]{4a^{2}x} \right )^{-1}-1}{\sqrt[3]{x}-\sqrt[3]{2a}}\left ( 2a \right )^{-\frac{1}{3}} \right )^{-6}\)

Ответ

\(\frac{16a^{4}}{x^{2}}\)

Решение № 16971:

\(\left ( \frac{\left ( x+\sqrt[3]{2ax^{2}} \right )\left ( 2a+\sqrt[3]{4a^{2}x} \right )^{-1}-1}{\sqrt[3]{x}-\sqrt[3]{2a}}\left ( 2a \right )^{-\frac{1}{3}} \right )^{-6}=\left ( \frac{\frac{x+2^{\frac{1}{3}}a^{\frac{1}{3}}x^{\frac{2}{3}}}{2a+2^{\frac{2}{3}}a^{\frac{2}{3}}x^{\frac{1}{3}}}-1}{x^{\frac{1}{3}}-2^{\frac{1}{3}}a^{\frac{1}{3}}}-\frac{1}{2^{\frac{1}{3}}a^{\frac{1}{3}}} \right )^{-6}=\left ( \frac{x^{\frac{2}{3}}-2^{\frac{2}{3}}a^{\frac{2}{3}}}{2^{\frac{2}{3}}a^{\frac{2}{3}}\left ( x^{\frac{1}{3}-2^{\frac{1}{3}}a^{\frac{1}{3}}} \right )}-\frac{1}{2^{\frac{1}{3}}a^{\frac{1}{3}}} \right )^{-6}=\left ( \frac{x^{\frac{1}{3}}+2^{\frac{1}{3}}a^{\frac{1}{3}}-2^{\frac{1}{3}}a^{\frac{1}{3}}}{2^{\frac{2}{3}}a^{\frac{2}{3}}} \right )^{-6}=\left ( \frac{x^{\frac{1}{3}}}{2^{\frac{2}{3}}a^{\frac{2}{3}}} \right )^{-6}=\frac{16a^{4}}{x^{2}}\)

Поделиться в социальных сетях

Комментарии (0)