№16972
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
При каком значении k многочлен \(x^{2}+2\left ( k-9 \right )x+\left ( k^{2}+3k+4 \right )\) можно представить в виде полного квадрата?
Ответ
\(\frac{11}{3}\)
Решение № 16970:
\(x^{2}+2\left ( k-9 \right )x+\left ( k^{2}+3k+4 \right )=\left ( 2\left ( k-9 \right ) \right )^{2}-4\left ( k^{2}+3k+4 \right )=0;4\left ( k^{2}-18k+81-k^{2}-3k-4 \right )=0;-21k+77=0;k=\frac{77}{21}=\frac{11}{3}\)