№16971
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\frac{2\sqrt{1+\frac{1}{4}\left ( \sqrt{\frac{1}{t}} -\sqrt{t}\right )^{2}}}{\sqrt{1+\frac{1}{4}\left ( \sqrt{\frac{1}{t}} -\sqrt{t}\right )^{2}-\frac{1}{2}\left ( \sqrt{\frac{1}{t}} -\sqrt{t}\right )}}\)
Ответ
\(\frac{1+t}{t}\)
Решение № 16969:
\(\frac{2\sqrt{1+\frac{1}{4}\left ( \sqrt{\frac{1}{t}} -\sqrt{t}\right )^{2}}}{\sqrt{1+\frac{1}{4}\left ( \sqrt{\frac{1}{t}} -\sqrt{t}\right )^{2}-\frac{1}{2}\left ( \sqrt{\frac{1}{t}} -\sqrt{t}\right )}}=\frac{2\sqrt{1+\frac{1}{4}\left ( \frac{1}{t}-2+t \right )}}{\sqrt{1+\frac{1}{4}\left ( \frac{1}{t}-2+t \right )-\frac{1}{2}\left ( \frac{1}{\sqrt{t}}-\sqrt{t} \right )}}=\frac{2\sqrt{1+\frac{1}{4}\cdot \frac{1-2t+t^{2}}{t}}}{\sqrt{1+\frac{1}{4}\cdot \frac{1-2t+t^{2}}{t}-\frac{1}{2}\cdot \frac{1-t}{\sqrt{t}}}}=\frac{\sqrt{\frac{1+2t+t^{2}}{t}}}{\frac{1}{2}\sqrt{\frac{1+2t+t^{2}}{t}}-\frac{1-t}{2\sqrt{t}}}=\frac{\frac{1+t}{\sqrt{t}}}{\frac{1+t}{2\sqrt{t}}-\frac{1-t}{2\sqrt{t}}}=\frac{\frac{1+t}{\sqrt{t}}}{\frac{1+t-1+t}{2\sqrt{t}}}=\frac{1+t}{t}\)