№16968
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\left ( x\sqrt[3]{\frac{x-1}{\left ( x+1 \right )^{2}}}+\frac{x-1}{\sqrt[3]{\left ( x^{2}-1 \right )^{2}}} \right )^{-\frac{3}{5}}:\left ( x^{2}-1 \right )^{\frac{4}{5}}\)
Ответ
\(\frac{1}{x^{2}-1}\)
Решение № 16966:
\(\left ( x\sqrt[3]{\frac{x-1}{\left ( x+1 \right )^{2}}}+\frac{x-1}{\sqrt[3]{\left ( x^{2}-1 \right )^{2}}} \right )^{-\frac{3}{5}}:\left ( x^{2}-1 \right )^{\frac{4}{5}}=\left ( \frac{x\sqrt[3]{x-1}}{\sqrt[3]{\left ( x+1 \right )^{2}}}+\frac{\sqrt[3]{x-1}}{\sqrt[3]{\left ( x+1 \right )^{2}}} \right )^{-\frac{3}{5}}\cdot \frac{1}{\sqrt[5]{\left ( x+1 \right )^{4}}}=\left ( \frac{\sqrt[3]{x-1}\left ( x+1 \right )}{\sqrt[3]{\left ( x+1 \right )^{2}}} \right )^{-\frac{3}{5}}\cdot \frac{1}{\sqrt[5]{\left ( x^{2}-1 \right )^{4}}}=\left ( \sqrt[3]{\left ( x-1 \right )\left ( x+1 \right )} \right )^{-\frac{3}{5}}\cdot \frac{1}{\sqrt[5]{\left ( x^{2}-1 \right )^{4}}}=\frac{1}{\sqrt[5]{\left ( x^{2}-1 \right )^{5}}}=\frac{1}{x^{2}-1}\)