Задача №16966

№16966

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение и вычислить \(\frac{\sqrt{4x+4+x^{-1}}}{\sqrt{x}\left | 2x^{2}-x-1 \right |}\)

Ответ

\(-\frac{1}{x\left ( x-1 \right )};\frac{1}{x\left ( x-1 \right )}\)

Решение № 16964:

\(\frac{\sqrt{4x+4+x^{-1}}}{\sqrt{x}\left | 2x^{2}-x-1 \right |}=\frac{\sqrt{4x+4+\frac{1}{x}}}{\sqrt{x}\left | \left ( x-1 \right )\left ( 2x+1 \right ) \right |}=\frac{\sqrt{\left ( 2x+1 \right )^{2}}}{x\left | \left ( x-1 \right )\left ( 2x+1 \right ) \right |}=\frac{2x+1}{x\left ( 2x+1 \right )\left | x-1 \right |}=\frac{1}{x\left | x-1 \right |}=-\frac{1}{x\left ( x-1 \right )};\frac{1}{x\left ( x-1 \right )}\)

Поделиться в социальных сетях

Комментарии (0)