№16966
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение и вычислить \(\frac{\sqrt{4x+4+x^{-1}}}{\sqrt{x}\left | 2x^{2}-x-1 \right |}\)
Ответ
\(-\frac{1}{x\left ( x-1 \right )};\frac{1}{x\left ( x-1 \right )}\)
Решение № 16964:
\(\frac{\sqrt{4x+4+x^{-1}}}{\sqrt{x}\left | 2x^{2}-x-1 \right |}=\frac{\sqrt{4x+4+\frac{1}{x}}}{\sqrt{x}\left | \left ( x-1 \right )\left ( 2x+1 \right ) \right |}=\frac{\sqrt{\left ( 2x+1 \right )^{2}}}{x\left | \left ( x-1 \right )\left ( 2x+1 \right ) \right |}=\frac{2x+1}{x\left ( 2x+1 \right )\left | x-1 \right |}=\frac{1}{x\left | x-1 \right |}=-\frac{1}{x\left ( x-1 \right )};\frac{1}{x\left ( x-1 \right )}\)