№16964
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Упростить выражение \(\left ( \left ( \sqrt{mn}-\frac{mn}{m+\sqrt{mn}} \right ):\frac{\sqrt[4]{mn}-\sqrt{n}}{m-n}-m\sqrt{n} \right )^{2}:\sqrt[3]{mn\sqrt{mn}}-\left ( \frac{m}{\sqrt{m^{4}-1}} \right )^{-2}\)
Ответ
\(\frac{1}{m^{2}}\)
Решение № 16962:
\(\left ( \left ( \sqrt{mn}-\frac{mn}{m+\sqrt{mn}} \right ):\frac{\sqrt[4]{mn}-\sqrt{n}}{m-n}-m\sqrt{n} \right )^{2}:\sqrt[3]{mn\sqrt{mn}}-\left ( \frac{m}{\sqrt{m^{4}-1}} \right )^{-2}=\left ( \sqrt{mn}\left ( 1-\frac{\sqrt{mn}}{\left ( \sqrt{m}+\sqrt{} \right )\sqrt{m}} \right ):\frac{\sqrt[4]{n}\left ( \sqrt[4]{m}-\sqrt[4]{n} \right )}{\left ( \sqrt{m}-\sqrt{n} \right )\left ( \sqrt{m}+\sqrt{n} \right )} -m\sqrt{n}\right )^{2}:\sqrt{mn}-\frac{m^{4}-1}{m^{2}}=\left ( m\sqrt[4]{n}\left ( \sqrt[4]{m}+\sqrt[4]{n} \right )-m\sqrt{n} \right )^{2}\cdot \frac{1}{\sqrt{mn}}-\frac{m^{4}-1}{m^{2}}=m^{2}-\frac{m^{4}-1}{m^{2}}=\frac{m^{4}-m^{4}+1}{m^{2}}=\frac{1}{m^{2}}\)