Задача №16963

№16963

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение и вычислить \(\left ( \left ( \frac{a\sqrt[3]{b}}{b\sqrt{a^{3}}} \right )^{\frac{3}{2}}+\left ( \frac{\sqrt{a}}{a\sqrt[8]{b^{3}}} \right )^{2} \right ):\left ( a^{\frac{1}{4}}+b^{\frac{1}{4}} \right )\)

Ответ

\(\frac{1}{ab}\)

Решение № 16961:

\(\left ( \left ( \frac{a\sqrt[3]{b}}{b\sqrt{a^{3}}} \right )^{\frac{3}{2}}+\left ( \frac{\sqrt{a}}{a\sqrt[8]{b^{3}}} \right )^{2} \right ):\left ( a^{\frac{1}{4}}+b^{\frac{1}{4}} \right )=\left ( \frac{a^{\frac{3}{2}}\left ( \sqrt[3]{b} \right )^{\frac{3}{2}}}{b^{\frac{3}{2}}\left ( \sqrt{a^{3}} \right )^{\frac{3}{2}}}+\frac{\left ( \sqrt{a} \right )^{2}}{a^{2}\left ( \sqrt[8]{b^{3}} \right )^{2}} \right ):\left ( a^{\frac{1}{4}}+b^{\frac{1}{4}} \right )=\left ( \frac{a^{\frac{3}{2}}b^{\frac{1}{2}}}{a^{\frac{9}{4}}b^{\frac{3}{2}}}+\frac{a}{a^{2}b^{\frac{3}{4}}} \right )\frac{1}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}=\left ( \frac{1}{a^{\frac{3}{4}}b}+\frac{1}{ab^{\frac{3}{4}}} \right )\frac{1}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}=\frac{1}{ab}\)

Поделиться в социальных сетях

Комментарии (0)