№16961
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение и вычислить \(\frac{a^{2}-4-\left | a-2 \right |}{a^{3}+2a^{2}-5a-6}\)
Ответ
\(\frac{1}{a+1};\frac{1}{a+3}\)
Решение № 16959:
\(\frac{a^{2}-4-\left | a-2 \right |}{a^{3}+2a^{2}-5a-6}=\frac{\left ( a-2 \right )\left ( a+2 \right )-\left | a-2 \right |}{\left ( a-2 \right )\left ( a+3 \right )\left ( a+1 \right )}=\frac{a+3}{\left ( a+3 \right )\left ( a+1 \right )};\frac{a+1}{\left ( a+3 \right )\left ( a+1 \right )}=\frac{1}{a+1};\frac{1}{a+3}\)