Задача №16928

№16928

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение и вычислить \(\left ( \frac{2\left ( a+1 \right )+2\sqrt{a^{2}+2a}}{3a+1-2\sqrt{a^{2}+2a}} \right )^{\frac{1}{2}}-\left ( \sqrt{2a+1}-\sqrt{a} \right )^{-1}\cdot \sqrt{a+2}\)

Ответ

\(\frac{\sqrt{a}}{\sqrt{2a+1}-\sqrt{a}}\)

Решение № 16926:

\(\left ( \frac{2\left ( a+1 \right )+2\sqrt{a^{2}+2a}}{3a+1-2\sqrt{a^{2}+2a}} \right )^{\frac{1}{2}}-\left ( \sqrt{2a+1}-\sqrt{a} \right )^{-1}\cdot \sqrt{a+2}=\sqrt{\frac{2a+2+2\sqrt{a^{2}+2a}}{3a+1-2\sqrt{2a^{2}+a}}}-\frac{\sqrt{a+2}}{\sqrt{2a+1}-\sqrt{a}}=\sqrt{\frac{\left ( \sqrt{a+2}+\sqrt{a} \right )^{2}}{\left ( \sqrt{2a+1}-\sqrt{a} \right )^{2}}}-\frac{\sqrt{a+2}}{\sqrt{2a+1}-\sqrt{a}}=\frac{\sqrt{a+2}+\sqrt{a}-\sqrt{a+2}}{\sqrt{2a+1}-\sqrt{a}}=\frac{\sqrt{a}}{\sqrt{2a+1}-\sqrt{a}}\)

Поделиться в социальных сетях

Комментарии (0)