№16927
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Сделать указанную подстановку и упростить результат \(\frac{\frac{1}{\sqrt{3+x}\sqrt{x+2}}+\frac{1}{\sqrt{3-x}\sqrt{x-2}}}{\frac{1}{\sqrt{3+x}\sqrt{x+2}}-\frac{1}{\sqrt{3-x}\sqrt{x-2}}}; x=\sqrt{6};\)
Ответ
\(-\frac{\sqrt{6}}{2}\)
Решение № 16925:
\(\frac{\frac{1}{\sqrt{3+x}\sqrt{x+2}}+\frac{1}{\sqrt{3-x}\sqrt{x-2}}}{\frac{1}{\sqrt{3+x}\sqrt{x+2}}-\frac{1}{\sqrt{3-x}\sqrt{x-2}}}; x=\sqrt{6};=\frac{\frac{1}{\sqrt{3+\sqrt{6}}\sqrt{\sqrt{6}+2}}+\frac{1}{\sqrt{3-\sqrt{6}}\sqrt{\sqrt{6}-2}}}{\frac{1}{\sqrt{3+\sqrt{6}}\sqrt{\sqrt{6}+2}}-\frac{1}{\sqrt{3-\sqrt{6}}\sqrt{\sqrt{6}-2}}}=\frac{\sqrt{\left ( 3-\sqrt{6} \right )\left ( \sqrt{6}-2 \right )}+\sqrt{\left ( 3+\sqrt{6} \right )\left ( \sqrt{6}+2 \right )}}{\sqrt{\left ( 3-\sqrt{6} \right )\left ( \sqrt{6}-2 \right )}-\sqrt{\left ( 3+\sqrt{6} \right )\left ( \sqrt{6}+2 \right )}}=\frac{\sqrt{5\sqrt{6}-12}+\sqrt{5\sqrt{6}+12}}{\sqrt{5\sqrt{6}-12}-\sqrt{5\sqrt{6}+12}}=\frac{10\sqrt{6}+2\sqrt{\left ( 5\sqrt{6} \right )^{2}-12^{2}}}{-24}=\frac{5\sqrt{6}+\sqrt{150-144}}{-12}=\frac{5\sqrt{6}+\sqrt{6}}{-12}=-\frac{\sqrt{6}}{2}\)