Задача №16926

№16926

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение и вычислить \(\left ( \frac{2-n}{n-1}+4\frac{m-1}{m-2} \right ):\left ( n^{2}\frac{m-1}{n-1}+m^{2}\frac{2-n}{m-2} \right )\)

Ответ

\(\frac{\sqrt{5}}{5}\)

Решение № 16924:

\(\left ( \frac{2-n}{n-1}+4\frac{m-1}{m-2} \right ):\left ( n^{2}\frac{m-1}{n-1}+m^{2}\frac{2-n}{m-2} \right )=\frac{3mn-2\left ( m+n \right )}{\left ( n-1 \right )\left ( m-2 \right )}:\frac{\left ( m-n \right )\left ( 3mn-2\left ( m+n \right ) \right )}{\left ( n-1 \right )\left ( m-2 \right )}=\frac{3mn-2\left ( m+n \right )}{\left ( n-1 \right )\left ( m-2 \right )}\cdot \frac{\left ( n-1 \right )\left ( m-2 \right )}{\left ( m-n \right )\left ( 3mn-2\left ( m+n \right ) \right )}=\frac{1}{m-n}=\frac{1}{\sqrt[4]{400}-\sqrt{5}}=\frac{1}{\sqrt{20}-\sqrt{5}}=\frac{1}{2\sqrt{5}-\sqrt{5}}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)

Поделиться в социальных сетях

Комментарии (0)