Задача №16924

№16924

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Упростить выражение \(\left ( \frac{1}{a+\sqrt{2}}-\frac{a^{2}+4}{a^{3}+2\sqrt{2}} \right ):\left ( \frac{a}{2}-\frac{1}{\sqrt{2}}+\frac{1}{a} \right )^{-1}\)

Ответ

\(-\frac{\sqrt{2}}{2a}\)

Решение № 16922:

\(\left ( \frac{1}{a+\sqrt{2}}-\frac{a^{2}+4}{a^{3}+2\sqrt{2}} \right ):\left ( \frac{a}{2}-\frac{1}{\sqrt{2}}+\frac{1}{a} \right )^{-1}=\left ( \frac{1}{a+\sqrt{2}}-\frac{a^{2}+4}{\left ( a+\sqrt{2} \right )\left ( a^{2}+\sqrt{2}a+2 \right )} \right )\cdot \frac{a^{2}+\sqrt{2}a+2}{2a}=\frac{a^{2}-\sqrt{2}a+2-a^{2}-4}{\left ( a+\sqrt{2} \right )\left ( a^{2}+\sqrt{2}a+2 \right )}\cdot \frac{a^{2}-\sqrt{2}a+2}{2a}=\frac{-\sqrt{2}a-2}{a+\sqrt{2}}\cdot \frac{1}{2a}=\frac{-\sqrt{2}\left ( a+\sqrt{2} \right )}{a+\sqrt{2}}\cdot \frac{1}{\sqrt{2a}}=-\frac{\sqrt{2}}{2a}\)

Поделиться в социальных сетях

Комментарии (0)