Задача №16920

№16920

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Упростить выражение и вычислить \(\left ( \left ( \frac{\sqrt{a}-1}{\sqrt{a}+1} \right )^{-1} \left (\frac{\sqrt{a}-1}{\sqrt{a}+1} \right )^{\frac{1}{2}} -\sqrt{a-1}\left ( \sqrt{a}+1 \right )^{-1}\right )\cdot \frac{1}{a^{\frac{2}{3}}+a^{\frac{1}{3}}+1}\)

Ответ

\(\frac{\sqrt[3]{a}-1}{4}\)

Решение № 16918:

\(\left ( \left ( \frac{\sqrt{a}-1}{\sqrt{a}+1} \right )^{-1} \left (\frac{\sqrt{a}-1}{\sqrt{a}+1} \right )^{\frac{1}{2}} -\sqrt{a-1}\left ( \sqrt{a}+1 \right )^{-1}\right )\cdot \frac{1}{a^{\frac{2}{3}}+a^{\frac{1}{3}}+1}=\left ( \frac{\sqrt{a}+1}{\sqrt{a}-1}\sqrt{\frac{\sqrt{a}-1}{\sqrt{a}+1}}-\frac{\sqrt{a-1}}{\sqrt{a}+1} \right )^{-2}\cdot \frac{1}{a^{\frac{2}{3}}+a^{\frac{1}{3}}+1}=\left ( \frac{\sqrt{a}+1}{\sqrt{\sqrt{a}-1}}-\frac{\sqrt{\sqrt{a}-1}}{\sqrt{\sqrt{a}+1}} \right )^{-2}\cdot \frac{1}{\sqrt[3]{a^{2}}+\sqrt[3]{a}+1}=\left ( \frac{\sqrt{a}+1-\sqrt{a}+1}{\sqrt{a-1}} \right )^{-2}\cdot \frac{1}{\sqrt[3]{a^{2}}+\sqrt[3]{a}+1}=\left ( \frac{2}{\sqrt{a-1}} \right )^{-2}\cdot \frac{1}{\sqrt[3]{a^{2}}+\sqrt[3]{a}+1}=\frac{a-1}{4\left ( a^{2}+\sqrt[3]{a}+1 \right )}=\frac{\left ( \sqrt[3]{a}-1 \right )\left ( \sqrt[3]{a^{2}}+\sqrt[3]{a}+1 \right )}{4\left ( a^{2}+\sqrt[3]{a}+1 \right )}=\frac{\sqrt[3]{a}-1}{4}\)

Поделиться в социальных сетях

Комментарии (0)