Задача №16906

№16906

Экзамены с этой задачей: Преобразования буквенных иррациональных выражений 

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Сделать указанную подстановку и упростить результат \(\frac{\left ( 1-y \right )\left ( y+2 \right )}{y^{2}\left ( y+1 \right )^{2}}; y=\frac{\sqrt{3}-1}{2};\)

Ответ

6

Решение № 16904:

\(\\frac{\left ( 1-y \right )\left ( y+2 \right )}{y^{2}\left ( y+1 \right )^{2}}; y=\frac{\sqrt{3}-1}{2};=\frac{\left (1-\frac{\sqrt{3}-1}{2} \right )\left (\frac{\sqrt{3}-1}{2}+2 \right )}{\left ( \frac{\sqrt{3}-1}{2} \right )^{2}\left ( \frac{\sqrt{3}-1}{2}+1 \right )^{2}}=\frac{\left (\frac{\sqrt{3}-1}{2} \right )^{2}+\frac{\sqrt{3}-1}{2}-2 }{\left (\left ( \frac{\sqrt{3}-1}{2} \right )^{2}+\frac{\sqrt{3}-1}{2} \right )}=\frac{\frac{2-\sqrt{3}}{2}+\frac{\sqrt{3}-1}{2}-2}{\left (\frac{2-\sqrt{3}}{2}+\frac{\sqrt{3}} \right )^{2}}=-\frac{\frac{2-\sqrt{3}+\sqrt{3}-1}{2}-2}{\left ( \frac{2-\sqrt{3}+\sqrt{3}-1}{2} \right )^{2}}=6)

Поделиться в социальных сетях

Комментарии (0)