№16896
Экзамены с этой задачей: Преобразования буквенных иррациональных выражений
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\frac{\left ( a-b \right )^{3}\left ( \sqrt{a}+\sqrt{b} \right )^{-3}+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left ( \sqrt{ab}-b \right )}{a-b}\)
Ответ
3
Решение № 16894:
\(\frac{\left ( a-b \right )^{3}\left ( \sqrt{a}+\sqrt{b} \right )^{-3}+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left ( \sqrt{ab}-b \right )}{a-b}=\frac{\left ( a-b \right )^{3}+\left ( 2a\sqrt{a}+b\sqrt{b} \right )\left ( \sqrt{a}+\sqrt{b} \right )^{3}}{\left ( \sqrt{a}+\sqrt{b} \right )^{3}\left ( a\sqrt{a}+b\sqrt{b} \right )}+\frac{3\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{3\left ( a^{3}+3a^{2}b+3ab^{2}+b^{3}+3a^{2}\sqrt{ab}+3b^{2}\sqrt{ab}+2ab\sqrt{ab} \right )}{a^{3}+3a^{2}b+3ab^{2}+b^{3}+3a^{2}\sqrt{ab}+3b^{2}\sqrt{ab}+2ab\sqrt{ab}}=3\)