Задача №16893

№16893

Экзамены с этой задачей: Преобразования буквенных иррациональных выражений 

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение и вычислить \(\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^{2}}-4x\sqrt{2}+8}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^{2}}+4x\sqrt{2}+8}\)

Ответ

2

Решение № 16891:

\(\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^{2}}-4x\sqrt{2}+8}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^{2}}+4x\sqrt{2}+8}=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{\left ( x-2\sqrt{2} \right )^{2}}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{\left ( x+2\sqrt{2} \right )^{2}}}=\frac{1}{\sqrt{x-2\sqrt{2}}}-\frac{1}{\sqrt{x+2\sqrt{2}}}=\frac{\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}}{\sqrt{9-8}}=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}=\sqrt{\left ( \sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}} \right )^{2}}=\sqrt{6-2\sqrt{9-8}}=\sqrt{6-2}=\sqrt{4}=2\)

Поделиться в социальных сетях

Комментарии (0)