№16889
Экзамены с этой задачей: Преобразования буквенных иррациональных выражений
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Упростить выражение и вычислить \(\frac{\left ( pq^{-1}+1 \right )^{2}}{pq^{-1}-p^{-1}q}\cdot \frac{p^{3}q^{-3}-1}{p^{2}q^{-2}+pq^{-1}+1}:\frac{p^{3}q^{-3}+1}{pq^{-1}+p^{-1}q-1}\)
Ответ
1
Решение № 16887:
\(\frac{\left ( pq^{-1}+1 \right )^{2}}{pq^{-1}-p^{-1}q}\cdot \frac{p^{3}q^{-3}-1}{p^{2}q^{-2}+pq^{-1}+1}:\frac{p^{3}q^{-3}+1}{pq^{-1}+p^{-1}q-1}=\frac{\left ( p+q \right )^{2}}{q^{2}}\cdot \frac{pq}{p^{2}-q^{2}}\cdot \frac{p^{3}-q^{3}}{q^{3}}\cdot \frac{q^{2}}{p^{2}+pq+q^{2}}:\left ( {\frac{p^{3}-q^{3}}{q^{3}}}{}\cdot \frac{pq}{p^{2}-pq+q^{2}} \right )=\frac{\left ( p+q \right )^{2}p}{q\left ( p+q \right )\left ( p-q \right )}\cdot \frac{\left ( p-q \right )\left ( p^{2}+pq+q^{2} \right )}{q\left ( p^{2}+pq+q^{2} \right )}:\left ( \frac{\left ( p+q \right )\left ( p^{2}-pq+q^{2} \right )p}{q^{2}\left ( p^{2}-pq+q^{2} \right )} \right )=\frac{p\left ( p+q \right )}{q^{2}}:\frac{p\left ( p+q \right )}{q^{2}}=1\)