№16882
Экзамены с этой задачей: Преобразования буквенных иррациональных выражений
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Упростить выражение \(\frac{1-\sqrt{2t}}{\frac{1-\sqrt[4]{8t^{3}}}{1-\sqrt[4]{2t}}-\sqrt{2t}}\cdot \left ( \frac{\sqrt[4]{\frac{1}{2t}}+\sqrt[4]{4t^{2}}}{1+\sqrt[4]{\frac{1}{2t}}}-\sqrt{2t} \right )^{-1}\)
Ответ
1
Решение № 16880:
\(\frac{1-\sqrt{2t}}{\frac{1-\sqrt[4]{8t^{3}}}{1-\sqrt[4]{2t}}-\sqrt{2t}}\cdot \left ( \frac{\sqrt[4]{\frac{1}{2t}}+\sqrt[4]{4t^{2}}}{1+\sqrt[4]{\frac{1}{2t}}}-\sqrt{2t} \right )^{-1}=\frac{\left ( 1-\sqrt[4]{4t^{2}} \right )\left ( 1-\sqrt[4]{2t} \right )}{1-\sqrt[4]{4t^{2}}}\cdot \left ( \frac{1+\sqrt[4]{8t^{3}}}{1+\sqrt[4]{2t}}-\sqrt[4]{4t^{2}} \right )^{-1}=\left ( 1-\sqrt[4]{2t} \right )\left ( 1-\sqrt[4]{2t}+\sqrt[4]{4t^{2}}-\sqrt[4]{4t^{2}} \right )^{-1}=\left ( 1-\sqrt[4]{2t} \right )\left ( 1-\sqrt[4]{2t} \right )^{-1}=\frac{\left ( 1-\sqrt[4]{2t} \right )}{\left ( 1-\sqrt[4]{2t} \right )}=1\)