№16780
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков, Середина отрезка,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
В деревне \(А\) живут 50 школьников, а в деревне \(В\) живут 100 школьников. Расстояние между деревнями равно З км. В какой точке дороги из \(А\) в \(В\) нужно построить школу, чтобы суммарное расстояние, проходимое всеми школьниками, было как можно меньше?
Ответ
В деревне В.
Решение № 16778:
Пусть расстояние от школы до деревни \(В\) равно х км. Тогда суммарное расстояние в километрах, проходимое всеми школьниками из деревни \(В\), равно \(100х\), а расстояние, проходимое школьниками из деревни \(А\), равно \(50(3 — х)\). Поэтому расстояние, проходимое всеми школьниками, равно \(100х + 50(3 — х) 150 + 50х\). Оно будет наименьшим, когда \(х = 0\),т. е. школа находится в деревне \(В\).