№16746
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, Понятие многочлена, Формулы сокращенного умножения, Формула для xⁿ-yⁿ,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Докажите, что для любого натурального \(n>2\) число \(n^(n-1)-1\) делится на \((n-1)^2\).
Ответ
нет ответа
Решение № 16744:
Воспользуйтесь тем, что $\frac{n^{n-1}-1}{n-1}=n^{n-2}+n^{n-3}+\ldots+n+1$ и каждое из \(n-1\) чисел \(1, n, \ldots, n^{n-3}, n^{n-2}$ при делении на \(n-1\) дает остаток \(1\)