№16734
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, Понятие многочлена, Формулы сокращенного умножения, Разность квадратов,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Докажите, что если к произведению четырех последовательных натуральных числе прибавить \(1\), то получится квадрат натурального числа.
Ответ
нет ответа
Решение № 16732:
Произведение чисел \(n-1, n, n+1\) и \(n+2\) равно $(n^2+n)(n^2+n-2)=(N+1)(N-1)$, где \(N=n^2+n-1\)