№16723
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, Понятие многочлена, Свойства многочленов, коэффициенты многочленов,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Докажите, что любая натуральная степень многочлена $x^4+x^3-3x^2+x+2$ имеет хотя бы один отрицательный коэффициент.
Ответ
нет ответа
Решение № 16721:
Пусть данный \(Р(х)\) - данный многочлен и \(Q(x)=(P(x)^n). Тогда \(Р(0)=Р(1)=2\) и \(Q(0)=Q(1)=2^n\). Поэтому \(Q(1)-Q(0)=0\). Но число (Q(1)-Q(0)\) равно сумме всех коэффициентов многочлена \( q\), кроме свободного члена