№16708
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, Понятие многочлена, Свойства многочленов, общие свойства многочленов,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Целое число \(с\) является корнем многочлена \(P(x)\) с целыми коэффициентами. Докажите, что свободный член этого многочлена делится на \(с\).
Ответ
нет ответа
Решение № 16706:
Воспользуйтесь равенством $(a_n\cdot(c^{n-1})+a_{n-1}c^{n-2}+\ldots+a_1)c+a_0=0$