№16645
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, Понятие многочлена, Деление многочлена на одночлен,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Выясните, какой из данных многочленов может быть частным от деления многочлена \(42\cdot x^{5}\cdot y^{4}+56\cdot x^{4}\cdot y^{2}\) на некоторый одночлен. Найдите делитель, если он существует: \(42\cdot x^{2}\cdot y+56\cdot x;21\cdot x^{3}\cdot y^{3}+28\cdot x^{3}\cdot y;4,2\cdot x^{4}\cdot y^{2}+5,6\cdot x^{3}\)
Ответ
\(4,2\cdot x^{4}\cdot y^{2}+5,6\cdot x^{3}\)
Решение № 16643:
\((4,2\cdot x^{4}\cdot y^{2}+5,6\cdot x^{3})\cdot 10\cdot x\cdot y^{2}=42\cdot x^{5}\cdot y^{4}+56\cdot x^{4}\cdot y^{2}\)