№16600
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, Понятие многочлена, Деление многочлена на одночлен,
Задача в следующих классах: 7 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Придумайте три одночлена, на которые делится данный многочлен: \(45\cdot m^{6}\cdot n^{2}+30\cdot m^{3}\cdot n^{5}+60\cdot m^{4}\cdot n^{3}-90\cdot m^{4}\cdot n^{5}\)
Ответ
\(m\cdot n,m^{2}\cdot n^{2},5\cdot m\cdot n\)
Решение № 16598:
\(45\cdot m^{6}\cdot n^{2}+30\cdot m^{3}\cdot n^{5}+60\cdot m^{4}\cdot n^{3}-90\cdot m^{4}\cdot n^{5};m\cdot n,m^{2}\cdot n^{2},5\cdot m\cdot n\)