№16567
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, Понятие многочлена, Формулы сокращенного умножения,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Замените символы * одночленами так, чтобы выполнялось равенство: \((1\cdot \frac{3}{4}\cdot x^{7}-*)\cdot (*+*)=*-64\cdot y^{4}\cdot z^{10}\)
Ответ
\((1\cdot \frac{3}{4}\cdot x^{7}-8\cdot y^{2}\cdot z^{5})\cdot (1\cdot \frac{3}{4}\cdot x^{7}+8\cdot y^{2}\cdot z^{5})=3\cdot \frac{1}{16}\cdot x^{14}-64\cdot y^{4}\cdot z^{10}\)
Решение № 16565:
\((1\cdot \frac{3}{4}\cdot x^{7}-*)\cdot (*+*)=*-64\cdot y^{4}\cdot z^{10};(1\cdot \frac{3}{4}\cdot x^{7}-8\cdot y^{2}\cdot z^{5})\cdot (1\cdot \frac{3}{4}\cdot x^{7}+8\cdot y^{2}\cdot z^{5})=3\cdot \frac{1}{16}\cdot x^{14}-64\cdot y^{4}\cdot z^{10}\)